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ABSTRACT

Radio frequency interference (RFI) can corrupt passive re-
mote sensing measurements taken with microwave radiome-
ters. With the increasingly utilized spectrum and the push for
larger bandwidth radiometers, the likelihood of RFI contam-
ination has grown significantly. In this work, an eigenvalue-
based algorithm is developed to detect the presence of RFI
and provide estimates of RFI-free radiation levels. Simu-
lated tests show that the proposed detector outperforms con-
ventional kurtosis-based RFI detectors in the low-to-medium
interferece-to-noise-power-ratio (INR) regime under contin-
uous wave (CW) and quadrature phase shift keying (QPSK)
RFIs.

Index Terms— Passive remote sensing, radio frequency
interference mitigation, eigenvalue methods.

1. INTRODUCTION

Passive remote sensing using microwave radiometry provides
a valuable insight into the geophysical state of our environ-
ment. Deploying remote sensing instruments on space flight
satellites offers an unparalleled capability to observe global-
scale system dynamics evolving across the planet. The nature
of radiometry calls for sensitive instruments to map the sec-
ond order statistics (SOS) of the geophysical thermal radia-
tion process to a physical quantity of some scientific value.

Any signal not originating from the physical processes of
interest, such as the radio frequency interference (RFI), can
offset the SOS measurements, resulting in degraded quality
for use in a scientific study. When the interference source is
powerful enough, the radiometer measurements may be off-
set beyond a physically reasonable range, which can be eas-
ily tagged and removed from the dataset. A more detrimen-
tal scenario is when the RFI is weak enough that the mea-
surement appears plausible yet corrupt, potentially mislead-
ing scientific interpretation.
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Obtaining passive radiometry readings that are free of RFI
is a non-trivial task. The optimal set of frequency bands for
remote sensing changes depending on the nature of the phys-
ical parameters being measured. While regulating authori-
ties such as the FCC and the ITU have allocated various fre-
quency bands for passive remote sensing, some bands such as
the allocation at 18.7 GHz are shared allocations, where re-
mote sensing and communication applications must coexist.
To compound the issue, observing a large swath of bandwidth
is often desired to increase the measurement sensitivity.

Existing radiometer missions have experienced RFI is-
sues that can potentially render the collected data unusable.
The Soil Moisture and Ocean Salinity (SMOS) mission [1,
2] has experienced RFI at the 1,400 MHz band, and found
that, without a RFI mitigation strategy in place, the mission
must actively seek out and turn off the sources of interfer-
ence [3]. The Aqua Satellite’s Advanced Microwave Scan-
ning Radiometer (AMSR-E) program has experienced RFI in
the 6.9 GHz and 10.7 GHz bands [4].

RFI mitigation algorithms have been developed and used
in existing satellite remote sensing missions such as Soil
Moisture Active Passive (SMAP) [5, 6]. While existing
methods have been useful at flagging narrowband pulsed
interference, research has been done to develop more sen-
sitive detectors such as the complex signal kurtosis (CSK)
detectors to efficiently flag wideband and continuous interfer-
ence [7, 8].

In this work, inspired by a related approach in a cognitive
radio setting [9], the property of the man-made interference
to occupy a low-dimensional subspace of the ambient mea-
surement dimension is exploited. The ratio of the maximum
to the minimum eigenvalues of the measurement covariance
matrix is employed as a test statistic. Also, the RFI-free noise
power estimate is obtained from the minimum eigenvalue.

The rest of the paper is organized as follows. The signal
model is described in Sec. 2. The eigenvalue-based RFI de-
tection and excision algorithm is developed in Sec. 3. The
results from numerical tests are provided in Sec. 4, and the
conclusions in Sec. 5.
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2. SIGNAL MODEL

The RFI detection problem is posed as a binary hypothesis
testing problem.

H0 : x(t) = w(t) (1)
H1 : x(t) = w(t) + r(t) (2)

The null hypothesis, H0 in (1), represents the case where the
received signal x(t) contains only the thermal noise w(t) ra-
diated by the earth. The alternate hypothesis,H1 in (2), repre-
sents the case where additional man-made interference r(t) is
observed by the radiometer. The thermal noise process w(t)
is assumed to be a zero-mean Gaussian noise process with
variance σ2

w.
The man-made interference r(t), with variance σ2

r , can be
modeled using different modulations and channelizations. In
this work, three interference types are considered: The contin-
uous wave (CW) interference; the single-channel quadrature
phase shift keying (QPSK)-modulated signal pulse-shaped
using a root raised cosine (RRCOS) filter; and the combina-
tion of multiple channels of QPSK RRCOS signals. In all
cases, the knowledge of the carrier frequency is unavailable,
resulting in passband signals. No phase synchronization or
carrier recovery is attempted.

A single-polarization radiometer using a digital back end
is considered, which samples x(t) as x[k] ≡ x(kTs), where
Ts is the Nyquist sampling interval, which is related to the
bandwidth B of the RFI as Ts ≤ 1/B. The resulting signal
x[k] under H0 contains only Gaussian noise samples w[k],
while under H1 both w[k] and the sampled RFI r[k]. That is,

H0 : x[k] = w[k] (3)
H1 : x[k] = w[k] + r[k]. (4)

3. EIGENVALUE-BASED RFI ALGORITHMS

3.1. Eigenvalue-Based RFI Detector

The maximum-to-minimum eigenvalue (MME) ratio test pro-
posed in the cognitive radio context in [9] is adapted here to
passive microwave remote sensing. The key idea is that man-
made interference signals typically occupy low-dimensional
subspace after oversampling.

Assume that the signal is oversampled by a factor of M ,
that is, Ts = 1/(BM). Then upon defining

xi(n) ≡ x[nM + i− 1], i = 1, 2, . . . ,M (5)

the n-th block of samples are put together into a vector x(n)
as

x(n) ≡ [x1(n), x1(n), . . . , xM (n)]T (6)

where T denotes transposition. Collecting L blocks, one ob-
tains

x̂(n) ≡ [xT (n),xT (n−1), . . .xT (n−L+1)]T ∈ CLM (7)

where L is a smoothing factor that can be used to increase the
dimensionality for subspace extraction.

The sample covariance matrix Rx(Ns) is obtained as

Rx(Ns) ≡
1

Ns

L−2+Ns∑
n=L−1

x̂(n)x̂(n)† (8)

where Ns is the number of sample vectors and † denotes Her-
mitian transpose. The eigenvalues of Rx(Ns) are then cal-
culated and used to form a test statistic. The ratio between
the maximum and the minimum eigenvalues forms the MME
ratio test statistic Tλ given by

Tλ =
λmax
λmin

. (9)

Numerical simulations of this proposed method are shown in
Sec. 4.1.

3.2. Eigenvalue-Based RFI Excision

In addition to detecting the RFI, the power of the Gaussian
noise can be estimated based on the assumption that the di-
mension of the RFI subspace is smaller than the ambient di-
mension. A simple scheme is to use λmin, the minimum
eigenvalue of Rx(Ns) from (8) to estimate the noise power
σ2
w. Under the null hypothesis H0, the estimate σ̂2

w for the
noise power is given by

σ̂2
w = λmin

Ns(√
Ns −

√
ML

) . (10)

The scaling factor in (10) is justified from the limiting distri-
bution of the eigenvalues. With y ≡ limNs→∞

ML
Ns
∈ (0, 1),

the extreme eigenvalues of the sample covariance matrix con-
verge almost surely to [10]

lim
Ns→∞

λmin = σ2 (1−√y)2 (11)

lim
Ns→∞

λmax = σ2 (1 +
√
y)

2
. (12)

Provided thatNs is relatively large, the observed λmin can be
used to find σ̂2

w using the scaling factor derived from (11) and
shown in (10). This concept is extended to the estimation of
σ2
w under the alternate hypothesis H1 when RFI is present. If

RFI occupies a low-dimensional subspace, the energy of the
Gaussian noise process will be captured by the lower set of
eigenvalues. Numerical tests of this method in Sec. 4.2 verify
acceptable performance of this approach.

4. NUMERICAL TESTS

4.1. RFI Detection

To evaluate the performance of the proposed detector under
various conditions, a receiver operating characteristic (ROC)
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Fig. 1. AUC performance of the proposed detector.

curve was obtained through Monte-Carlo simulations, and
the area-under-curve (AUC) metric was used as the figure of
merit. The interference-to-noise power ratio (INR) in decibels
is defined as

INRdB = 10 log10
σ2
r

σ2
w

. (13)

The plot of the AUC values at different INR levels is shown
in Fig. 1, which was obtained from 200 Monte-Carlo runs.
The total number of samples was N = 10, 000, with param-
eters M = 4 and L = 4. The performance of the MME
ratio-based detector was compared to those of the full-band
kurtosis-based detector [5], as well as the spectral kurtosis de-
tector based on 16 sub-bands [11]. It can be seen from Fig. 1
that the MME ratio test outperforms the detectors based on
kurtosis and spectral kurtosis.

4.2. Noise Power Estimation

To evaluate the noise power estimation performance, the
mean square error (MSE) was calculated between the pro-
posed estimate and the true noise power used to generate
the dataset, which was σ2

w = 1. The MSE from the sample
variance was calculated for comparison.

Fig. 2 shows the MSE values as the INR is varied for dif-
ferent RFI models considered. It can be seen from the fig-
ure that the proposed eigenvalue-based noise power estimator
outperforms the sample variance estimator in the medium-to-
high INR regime, while at low SNR levels, the sample vari-
ance yields smaller MSE. Therefore, a hybrid approach will
be explored in the future work. Furthermore, the MSE per-
formance of the eigenvalue-based noise power estimates vary
for different signal types. This may be because the dimension
of the subspace occupied by the RFI changes depending on
the RFI types. Future work will examine the use of an or-
der selection method to determine the dimension of the noise
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subspace, and averaging multiple eigenvalues to improve the
estimation performance.

5. CONCLUSION

An RFI detector based on the ratio of the maximum to the
minimum eigenvalues of the signal covariance matrix has
been proposed for passive remote sensing. The power level
of the RFI-free thermal radiation was estimated as the scaled
minimum eigenvalue. Numerical tests verified that the pro-
posed detector yields superior detection capability over the
full-band and spectral kurtosis-based RFI detectors under
CW, QPSK, and multi-channel QPSK RFIs, especially in
the low-to-medium INR ranges. The eigenvalue-based noise
power estimator outperformed the sample covariance esti-
mate in the medium-to-high INR ranges.

In future work, we will focus on the eigenvalue methods
for both detection and estimation. Further analysis/experiments
will be done to compare the MME detector with other state-
of-the-art detection methods. The ability to improve the
accuracy of the noise power estimation will be explored.
Development of a joint detection/estimation algorithm and
the use of an order-selection method seem to be promising
directions.
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